

RFI350U－AYW－DNS

SPECIFICATION

CUSTOMER：

APPROVED BY

PCB VERSION

DATE

FOR CUSTOMER USE ONLY

SALES BY
APPROVED BY CHECKED BY PREPARED BY

Release DATE：

TFT Display Inspection Specification：https：／／www．raystar－optronics．com／download／products．htm Precaution in use of TFT module：https：／／www．raystar－optronics．com／download／declaration．htm

Revision History

VERSION	DATE	REVISED PAGE NO.	Note
0	$2018 / 06 / 01$		First issue
A	$2020 / 08 / 28$		Modify backlight. Add Pixel pitch Add Initial Code For Beference B
			Modify AC Characteristics

Contents

1.Module Classification Information
2.Summary
3.General Specifications
4.Interface
5.Contour Drawing
6.Block Diagram
7.Absolute Maximum Ratings
8.Electrical Characteristics
9.DC Characteristics
10.AC Characteristics
11.Optical Characteristics
12.Reliability
13.Touch Panel Information
14.Initial Code For Reference
15.Other

1.Module Classification Information

\mathbf{R}	\mathbf{F}	\mathbf{I}	$\mathbf{3 5}$	$\mathbf{0 U}$	$\mathbf{-}$	\mathbf{A}	\mathbf{Y}	\mathbf{W}	$\mathbf{-}$	\mathbf{D}	\mathbf{N}	\mathbf{S}
1	2	3	4	5	-	6	7	8	-	9	10	11

2.Summary

TFT 3.5 is a IPS transmissive type color active matrix TFT liquid crystal display that use amorphous silicon TFT as switching devices. This module is a composed of a TFT_LCD module, It is usually designed for industrial application and this module follows RoHs.

RAYSTAR

3.General Specifications

- Size: 3.5 inch
- Dot Matrix: $320 \times$ RGBx 480 (TFT) dots

■ Module dimension: 54.5 (W) $\times 83.0$ (H) $\times 3.66(\mathrm{D}) \mathrm{mm}$
■ Active area: $48.96 \times 73.44 \mathrm{~mm}$
■ Pixel pitch: $0.153 \times 0.153 \mathrm{~mm}$

- LCD type: TFT, Normally Black, Transmissive

■ View Direction: 80/80/80/80

- Aspect Ratio: Portrait

■ TFT Driver IC: ILI9488 or Equivalent
■ TFT Interface: MCU 8/16/18-bit, 3-SPI ,RGB interface+3-SPI

- Backlight Type: LED,Normally White
- With /Without TP: With RTP
- Surface: Anti-Glare
*Color tone slight changed by temperature and driving voltage.

4.Interface

LCM PIN Definition

NO	Symbol	Function	I/O
1	LEDK	Cathode of LED backlight	P
2	LEDA	Anode of LED backlight.	P
3	IM0	Note 1	1
4	IM1	Note 1	1
5	IM2	Note 1	1
6	RESET	System reset pin.	1
7	NC(VS)	No Connection (Vrtical Sync signal) Note 2)	I
8	$\mathrm{NC}(\mathrm{HS})$	No Connection (Horizontal Sync signal ; Note 2)	I
9	NC(DCLK)	No Connection (Pixel clock signal; Note 2)	I
10	NC(DE)	No Connection (Data Enable; Note 2)	I
11-16	DB17-12	Data bus (R5~R0; RGB-18bit Pixel; Note 2)	I
17-22	DB11-6	Data bus (G5~G0; RGB-18bit Pixel; Note 2)	I
23-28	DB5-0	Data bus (B5~B0; RGB-18bit Pixel; Note 2)	I
29	NC (SDA)	Connection (serial data input/output pin)	I
30	RD	Read strobe signal. Read out data when RDX is Low.	I
31	WR (SCL)	Write data when WRX is Low.(serial clock input pin)	I
32	D/C	register select	I
33	CS (NCS)	Chip select signal (serial chip select input pin)	1
34	IOVCC	Power supply (TYP:1.8V/2.8V).	P
35	VCl	Power supply (TYP:2.8V).	P
36	GND	Ground	P
37	YD	Bottom electrode	
38	XR	Right electrode	
39	YU	Top electrode	
40	XL	Left electrode	

'RAYSTAR
Note 1:

IM2	IM1	IM0	MPU Interface	GRAM
0	0	0	8080 MCU 18-bit bus	$\mathrm{D}[17: 0]$
0	1	0	8080 MCU 16-bit bus	$\mathrm{D}[15: 0]$
0	1	1	8080 MCU 8-bit bus	$\mathrm{D}[7: 0]$
1	0	1	3-Line SPI	SDA,SCL,NCS
1	0	1	RGB interface+3-SPI	$\mathrm{D}[17: 0]$ (RGB-18bit/Pixel) $\mathrm{D}[15: 0]$ $(R G B-16 b i t / P i x e l) ~$

Note 2:
This module suggests function is for 8080 MCU mode, if this module wants change to use RGB Interface mode, please setting external pin IM [2:0] as 101 (3-SPI Initial code setting RGB-18bit/Pixel or RGB-16bit/Pixel), and reference the 10.5. RGB Interface Selection

5.Contour Drawing

6.Block Diagram

'RAYSTAR

7.Absolute Maximum Ratings

Item	Symbol	Min	Typ	Max	Unit
Operating Temperature	TOP	-20	-	+70	${ }^{\circ} \mathrm{C}$
Storage Temperature	TST	-30	-	+80	${ }^{\circ} \mathrm{C}$

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

1. Temp. $\leqq 60^{\circ} \mathrm{C}, 90 \%$ RH MAX. Temp. $>60^{\circ} \mathrm{C}$, Absolute humidity shall be less than 90% RH at $60^{\circ} \mathrm{C}$

8.Electrical Characteristics

8.1. Operating conditions:

Item	Symbol	Condition	Min	Typ	Max	Unit
Supply Voltage for digital	IOVCC	-	-	$1.8 / 2.8$	3.3	V
Supply Voltage for analog	VCl	-	-	2.8	3.3	V
Power Supply for Current	ICC	IOVCC $=\mathrm{VCl}$ $=\mathrm{VCC}=3.3 \mathrm{~V}$	-	13.6	-	mA

8.2. LED driving conditions

Parameter	Symbol	Min	Typ	Max	Unit	Remark
LED current	-	-	160		mA	-
LED voltage	LEDA	2.7	3.2	3.4	V	Note 1
LED Life Time	-	-	50000	-	Hr	Note 2,3

Note 1 : There are 1 Groups LED
Note 2 : $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Note 3 : Brightness to be decreased to 50% of the initial value
'RAYSTAR
9.DC CHARATERISTICS

Parameter	Symbol	Rating			Unit	Condition
		Min	Typ	Max		
Low level input voltage	V_{IL}	0	-	0.2 VCC	V	
High level input voltage	$\mathrm{V}_{I H}$	0.8 VCC	-	VCC	V	

'RAYSTAR
10.AC CHARATERISTICS

10.1. DBI Type C Option 1 (3-Line Serial Interface)

The 3-line/9-bit serial bus interface of the ILI9488 can be used by setting external pin IM [2:0] as 101. Figure 1 describes an interface with 8080 MCU system interface.

Figure 1: 3-Line Serial Interface
The available display data formats are:
*262K-Colors, RGB 6, 6, 6 bits input data (set Standard Command 3Ah, DBI [2:0] as 110)

10.1.1. SPI Data for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color

Figure 2: SPI Data for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color
Notes:

1. One pixel data contains 18 -bit color depth information.
2. The most significant bits are: $R \times 5, G \times 5$, and $B \times 5$.
3. The least significant bits are: $R \times 0, G \times 0$, and $B \times 0$.

Figure 3: 3-Line SPI Mode Read Data
Note: , ${ }^{\prime \prime}=$ void
R

10.2. 8-bit Parallel MCU Interface

The DBI TYPE B 8-bit parallel bus interface of the ILI9488 is used by setting the external pin IM [2:0] as 011. Figure 4 shows this system interface.

Figure 4: 8-bit Parallel MCU Interface
The available display data formats are:
*65K-Colors, RGB 5, 6, 5 bits input data (set Standard Command 3Ah, DBI [2:0] as 101) *262K-Colors, RGB 6, 6, 6 bits input data (set Standard Command 3Ah, DBI [2:0] as 110)
10.2.1. 8-bit Data Bus for 16-bit/pixel (RGB 5-6-5 Bits Input), 65K-color

Figure 5: 8-bit Data Bus for 16-bit/pixel (RGB 6-5-6 Bits Input), 65K-color

Notes:

1. The data order is as follows: $M S B=D B 7, L S B=D B 0$, and picture data is $M S B=B i t 5, L S B$ = Bit 0 for Green data, and MSB = Bit 4, LSB = Bit 0 for Red and Blue data.
2. 2-times transfer is used to transmit 1 pixel data to the 16-bit color depth information.
10.2.2. 8-bit Data Bus for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color

Figure 6: 8-bit Data Bus for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color
Notes:

1. The data order is as follows: $\mathrm{MSB}=\mathrm{DB} 7, \mathrm{LSB}=\mathrm{DB}$, and picture data is $\mathrm{MSB}=\mathrm{Bit} 5, \mathrm{LSB}$ = Bit 0 for Green, Red and Blue data.
2. 3-times transfer is used to transmit 1 pixel data to the 18-bit color depth information.
"RAYSTAR
10.3. 16-bit Parallel MCU Interface

The 8080-system 16-bit parallel bus interface of the ILI9488 can be used by setting external pin IM [2:0] as 010 .
Figure 7 shows this system interface.

Figure 7: 16-bit Parallel MCU Interface
The available display data formats are:
65K-Colors, RGB 5, 6, 5 bits input data (set Standard Command 3Ah, DBI [2:0] as 101) 262K-Colors, RGB 6, 6, 6 bits input data (set Standard Command 3Ah, DBI [2:0] as 110)
10.3.1 16-bit Data Bus for 16-bit/pixel (RGB 5-6-5 Bits Input), 65K-color

Figure 8: 16-bit Data Bus for 16-bit/pixel (RGB 5-6-5 Bits Input), 65K-color
Notes:

1. The data order is as follows: $\mathrm{MSB}=\mathrm{DB} 15, \mathrm{LSB}=\mathrm{DB} 0$, and picture data is $\mathrm{MSB}=\mathrm{Bit} 5$, LSB = Bit 0 for Green data, and MSB = Bit 4, LSB = Bit0 for Red and Blue data.
2. 1-time transfer is used to transmit 1 pixel data to the 16 -bit color depth information.
10.3.2 16-bit Data Bus for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color

CS
RESET
D/C
WR
RD

"1"		
"0"	"1"	
4		4

DB17~DB16

Figure 9: 16-bit Data Bus for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color
Notes:

1. The data order is as follows: $\mathrm{MSB}=\mathrm{DB} 15, \mathrm{LSB}=\mathrm{DB} 0$, and picture data is $\mathrm{MSB}=\mathrm{Bit} 5, \mathrm{LSB}$ = Bit 0 for Green, Red and Blue data.
2. 3-times transfer is used to transmit 2 pixel data to the 18-bit color depth information.
'RAYSTAR
10.4. 18-bit Parallel MCU Interface

The 8080-system 18-bit parallel bus interface of the ILI9488 can be used by setting external pin IM [2:0] as 000.

Figure 10 shows this system interface.

Figure 10: 18-bit Parallel MCU Interface
The available display data formats is:
262K-Colors, RGB 6, 6, 6 bits input data (set Standard Command 3Ah, DBI [2:0] as 110)
10.4.1 18-bit Data Bus for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color

Figure 11: 18-bit Data Bus for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color

Notes:

1. The data order is as follows: $\mathrm{MSB}=\mathrm{DB} 17, \mathrm{LSB}=\mathrm{DB} 0$, and picture data is $\mathrm{MSB}=\mathrm{Bit} 5$, LSB = Bit 0 for Green, Red and Blue data.
2. 1-times transfer is used to transmit 1 pixel data to the 18 -bit color depth information.

10.5. DPI (RGB Interface)

The DPI can display moving pictures by two ways: rewrite into the GRAM and transmit directly to the shift register. The selection is set by the register BPGRAM (bypass GRAM) and RM bit. The RM bit selects an interface for the access operation of the Frame Memory. For the DPI, RM should be set as 1 .

BPGRAM	Display Data Path
1	Direct to shift register
0	Write into Memory
RM	Interface for RAM access
0	System interface
1	RGB interface

The DM bit selects the clock operation mode. It allows switching between display operat ionsin synchronization with the internal oscillation clock.If $\mathrm{DM}=1$,the external DCLK cannot be stopped unless it enters the Sleep-In mode.

DM	RGB Interface Operating Clock Selection
0	Internal system clock
1	RGB interface (DCLK)

10.5.1 RGB Interface Selection

The DPI can be selected by the RCM bit. When the RCM is set to 0 , the DE mode is selected by VS,HS,DCLK,DE, and DB[17:0] (or DB[15:0]) pins.

When RCM is set to 1 ,the SYNC mode is selected by VS,HS,DCLK, and DB[17:0] (or DB[15:0]) pins. It supports several pixel formats that can be selected by DPI[2:0] bits in Pixel Format Set (R3Ah) command. The selection of a given interface is done by DPI[2:0], as shown in Table 1 and Figure 12.

Table 1: DPI Interface Selection

RGB Interface Mode	RGB Mode	Used Pins
18-bit RGB interface (262 K colors)	DE Mode	VS, HS, DE, DCLK, DB [17 :0]
16-bit RGB interface (65 K colors)	DE signal.	VS, HS , DE, DCLK, DB [15 :0]
18-bit RGB interface (262K colors)	SYNC Mode In the SYNC mode, DE	VS, HS , DCLK, DB [17:0]
16-bit RGB interface (65 K colors)	signal is ignored; blanking porch is determined by B 5 h command.	VS, HS , DCLK, DB [15:0]

18-bit DPI interface connection (DB [17:0] is used): set pixel format DPI [2:0] as 110

$D B 17$	DB 16	DB 15	DB 14	DB 13	DB 12	DB 11	DB 10	$\mathrm{DB9}$	DB 8	DB 7	DB 6	DB 5	$\mathrm{DB4}$	DB 3	DB 2	DB 1	$\mathrm{DB0}$
$\mathrm{R}[5]$	$\mathrm{R} 4]$	$\mathrm{R}[3]$	$\mathrm{R}[2]$	$\mathrm{R}[1]$	$\mathrm{R}[0]$	$\mathrm{G}[5]$	$\mathrm{G}[4]$	$\mathrm{G}[3]$	$\mathrm{G}[2]$	$\mathrm{G}[1]$	$\mathrm{G}[0]$	$\mathrm{B}[5]$	$\mathrm{B}[4]$	$\mathrm{B}[3]$	$\mathrm{B}[2]$	$\mathrm{B}[1]$	$\mathrm{B}[0]$

16-bit DPI interface connection (DB [15:0] is used): set pixel format DPI [2:0] as 101

Figure 12: RGB Interface 18/16 Pixel Format Selection
The Pixel clock (DCLK) runs all the time without stop.It is used to enter VS, HS, DE and $\mathrm{DB}[17: 0]$ (or $\mathrm{DB}[15: 0]$) states when there is a rising edge of the DCLK. The DCLK cannot be used as the internal clock for other functions of the display module.

Vertical synchronization (VS)is used to indicate when a new frame of the display is received. This is low enable and its state is read to the display module by a rising edge of the DOT CLK signal.

Horizontal synchronization (HS)is used to indicate when a new line of the frame is received. This is low enable and its state is read to the display module by a rising edge of the DOT CLK signal.

Data Enable(DE)is used to indicate when the RGB information that should be transferred in the display is received. This is a high enable, and its state is read to the display module by a rising edge of the DCLK signal. $\mathrm{DB}[17: 0]$ (or $\mathrm{DB}[15: 0]$) is used to indicate what is the information of the image that is transferred on the display(when $\mathrm{DE}=0$ (low) and there is a rising edge of DCLK). DB[17:0] (or DB[15:0]) can be 0 (low) or 1 (high). These lines are read by a rising edge of the DOT CLK signal. In RGB interface modes, the input display data is written to GRAM first then outputs the corresponding source voltage according to the gray data from GRAM.
'RAYSTAR

10.5.2 RGB Interface Timing

DPI Parameters Setting(BYPASS bit $=0$)

Parameters	Symbols	Min.	Typ.	Max.	Units
Horizontal Synchronization	H_Low	3	-	H_Low < HBP	DCLK
Horizontal Back Porch	HBP	3	-	192	DCLK
Horizontal Front Porch	HFP	3	-	255	DCLK
Horizontal Address	HACT	-	320	-	DCLK
Horizontal Frequency		-	-	33	KHz
Vertical Synchronization	V_Low	1	-	V_Low < VBP	Line
Vertical Back Porch	VBP	2	-	V_Low+VBP+VFP < 32	Line
Vertical Front Porch	VFP	2	-		Line
Vertical Address	VACT	-	480		Line
Vertical Frequency		60	-		Hz
DCLK cycle		100	-	70	ns
DCLK Frequency		10	-	50	20

DPI Parameters Setting(BYPASS bit $=1$)

Parameters	Symbols	Min.	Typ.	Max.	Units
Horizontal Synchronization	H_Low	3	-	H_Low < HBP	DCLK
Horizontal Back Porch	HBP	20	-	192	DCLK
Horizontal Front Porch	HFP	70	-	255	DCLK
Horizontal Address	HACT	-	320	-	DCLK
Horizontal Frequency		-	-	33	KHz
Vertical Synchronization	V_Low	1	-	V_Low < VBP	Line
Vertical Back Porch	VBP	2	-	V_Low+VBP+VFP < 32	Line
Vertical Front Porch	VFP	2	-		Line
Vertical Address	VACT	-	480		Line
Vertical Frequency		60	-		Hz
DCLK cycle		83.3	-	70	ns
DCLK Frequency		12	-	20	MHz

'RAYSTAR

Figure 13: RGB Interface Timing Diagram
'RAYSTAR

10.6. Reset Timing

Table 2: Reset Timing

Signal	Symbol	Parameter	Min	Max	Unit
RESET	tRW	Reset pulse duration	10		uS
	tRT	Reset cancel		5 (note 1,5)	mS
				120 (note $1,6,7$)	mS

Notes:

1. The reset cancel also includes the required time for loading ID bytes, VCOM setting and other settings from the EEPROM to registers. After a rising edge of RESET, this loading is done within 5 ms after the H/W reset cancel (tRT).
2. According to the Table 3, a spike due to an electrostatic discharge on the RESET line does not cause irregular system reset.

RESET Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 9us	Reset
Between 5us and 9us	Reset starts

Table 3
3. During the Reset period, the display will be blanked (When Reset starts in the Sleep Out mode, the display will enter the blanking sequence in at least 120 ms . The display remains the blank state in the Sleep In mode.) and then return to the default condition for the Hardware Reset.
4. Spike Rejection can also be applied during a valid reset pulse, as shown below:

$\rightarrow \mathrm{H}<^{20 \mathrm{~ns}}$
Less than 20ns width positive spike will be rejected
Figure 14: Positive Noise Pulse during Reset Low
5. When Reset is applied during the Sleep In Mode.
6. When Reset is applied during the Sleep Out Mode.
7. It is necessary to wait 5 msec after releasing RESET before sending commands. The Sleep

Out command also cannot be sent in 120 msec .
10.7. Other command, display data format...,Please reference the ILI9488 Spec
"RAYSTAR
11.Optical Characteristics

Item		Symbol	Condition.	Min	Typ.	Max.	Unit	Remark
Response time		Tr	$\theta=0^{\circ}$, $\Phi=0^{\circ}$	-	30	-	.ms	Note 3,
		Tf						
Contrast ratio		CR	At optimized viewing angle	-	700	-	-	Note 4,
Color Chromaticity	White	Wx	$\theta=0^{\circ}, ~ Ф=0$	0.26	0.31	0.36		$\begin{aligned} & \text { Note } \\ & 2,6,7 \end{aligned}$
		Wy		0.28	0.33	0.38		
Viewing angle	Hor.	өR	$C R \geqq 10$	-	80		Deg.	Note 1
		OL		-	80			
	Ver.	ФT		-	80	-		
		ФВ		-	80	-		
Brightness		-	-	350	400	-	$\mathrm{cd} / \mathrm{m}^{2}$	Center of display
Uniformity		(U)	-	75	-	-	\%	Note5

$\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C} \quad$ (ILED $=160 \mathrm{~mA}$)
Note 1: Definition of viewing angle range

Fig. 11.1. Definition of viewing angle
Note 2: Test equipment setup:
After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7 luminance meter 1.0° field of view at a distance of 50 cm and normal direction.

Fig. 11.2. Optical measurement system setup
Note 3: Definition of Response time:
The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90% to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10\%to 90\%

Note 4: Definition of contrast ratio:
The contrast ratio is defined as the following expression.
Contrast ratio $(\mathrm{CR})=\frac{\text { Luminance measured when LCD on the "White" state }}{\text { Luminance measured when LCD on the "Black" state }}$
'RAYSTAR
Note 5: Definition of Luminance Uniformity
Active area is divided into 9 measuring areas (reference the picture in below). Every measuring point is placed at the center of each measuring area.
Luminance Uniformity (U) = Lmin/Lmax $\times 100 \%$
$L=$ Active area length
W = Active area width

Fig11.3. . Definition of uniformity
Note 6: Definition of color chromaticity (CIE 1931)
Color coordinates measured at the center point of LCD
Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.
"RAYSTAR

12.Reliability

Content of Reliability Test (Wide temperature, $-20^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$)

Environmental Test			
Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	$\begin{aligned} & 80^{\circ} \mathrm{C} \\ & 96 \mathrm{hrs} \end{aligned}$	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & 96 \mathrm{hrs} \end{aligned}$	1,2
High Temperature Operation	Endurance test applying the electric stress (Voltage \& Current) and the thermal stress to the element for a long time.	$70^{\circ} \mathrm{C}$ 96hrs	
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	$\begin{aligned} & -20^{\circ} \mathrm{C} \\ & 96 \mathrm{hrs} \end{aligned}$	1
High Temperature/ Humidity Operation	The module should be allowed to stand at 40 ${ }^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ max	$\begin{aligned} & 40^{\circ} \mathrm{C}, 90 \% \mathrm{RH} \\ & 96 \mathrm{hrs} \end{aligned}$	1,2
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation	$-20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$ 10 cycles	
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude : 1.5 mm Vibration Frequency : $10 ~ 55 \mathrm{~Hz}$ One cycle 60 seconds to 3 directions of X, Y, Z for Each 15 minutes	3
Static electricity test	Endurance test applying the electric stress to the terminal.	$\begin{aligned} & \mathrm{VS}= \pm 600 \mathrm{~V} \text { (contact) } \\ & , \pm 800 \mathrm{v} \text { (air), } \\ & \mathrm{RS}=330 \Omega \\ & \mathrm{CS}=150 \mathrm{pF} \\ & 10 \text { times } \end{aligned}$	

Note1: No dew condensation to be observed.
Note2: The function test shall be conducted after 4 hours storage at the normal
Temperature and humidity after remove from the test chamber.
Note3: The packing have to including into the vibration testing.

13.Touch Panel Information

'RAYSTAR
13.1. Resistance Touch Panel General Specifications

Item	Description
Driving condition	DC5V
Operating force	$10 \sim 120 \mathrm{~g}$
Linearity max	$\leq \pm 1.5 \%$
Insulating resistance	$>20 \mathrm{M} \Omega, 25 \mathrm{~V}$ (DC)
Light transparence	70%
Structure type	ITO Film/ITO Glass(F/G)
Surface Hardness	3 H typ
Pen Hitting Durability (with the silicon rubber)	$>1000,000$ times
X resistance	$100 \sim 500 \Omega$
Y resistance	$300 \sim 700 \Omega$

RAYSTAR

14.Initial Code For Reference

Void ILI9488_Panel_InitialCode for MCU-16bit(void)

\{
Write_Command(0xE0);
Write_Data(0x00);
Write_Data(0x04);
Write_Data(0x06);
Write_Data(0x00);
Write_Data(0x0F);
Write_Data(0x0A);
Write_Data(0x38);
Write_Data(0x9B);
Write_Data(0x49);
Write_Data(0x09);
Write_Data(0x06);
Write_Data(0x0b);
Write_Data(0x1D);
Write_Data(0x1E);
Write_Data(0x0F);
Write_Command(0xE1);
Write_Data(0x00);
Write_Data(0x21);
Write_Data(0x22);
Write_Data(0x04);
Write_Data(0x09);
Write_Data(0x06);
Write_Data(0x36);
Write_Data(0x46);
Write_Data(0x47);
Write_Data(0x05);
Write_Data(0x10);
Write_Data(0x0F);
Write_Data(0×39);
Write_Data(0x3B);
Write_Data(0x0F);
Write_Command(0xB1);
Write_Data(0xA0);
Write_Command(0xB4);
Write_Data(0x02);
Write_Command(0xC0);
Write_Data(0x17);
Write_Data(0x15);
Write_Command(0xC1);

Write_Data(0x41);
Write_Command(0xC5);
Write_Data(0x00);
Write_Data(0x12);
Write_Data(0x80);
Write_Command(0xB6);
Write_Data(0x02);
Write_Command(0x36);
Write_Data(0x48);
Write_Command(0x3a);
Write_Data(0×55);
Write_Command(0xBE);
Write_Data(0x00);
Write_Data(0x04);
Write_Command(0xE9);
Write_Data(0x00);
Write_Command(0XF7);
Write_Data(0xA9);
Write_Data(0x51);
Write_Data(0x2C);
Write_Data(0x82);
Write_Command(0x21);
Write_Command(0x11);
delay(1000);
Write_Command(0x29);
\}

6 , Summary :

Sales signature :
Customer Signature : \qquad Date: 11

